Metal-Assisted Assembly of Chain and Macrocyclic As-S Ligands from Ethylcycloarsathiane $(C_2H_5AsS)_n$

Thomas Häusler and William S. Sheldrick*

Lehrstuhl für Analytische Chemie, Ruhr-Universität Bochum, D-44780 Bochum

Received September 12, 1995

Key Words: Arsenic-sulphur ligands / Macrocyclic ligands / Ethylcycloarsathiane / Ruthenium complexes

Treatment of cyclo-(EtAsS)_n with [RuCl₂(Ph₃P)₃] and [Re-Br(CO)₅] affords the respective complexes [RuCl₂{cyclo-(EtAsS)₄}(Ph₃P)] (1) and [{Re(CO)₃}₂{ μ -(Et₄As₄S₅)}] (2). Whereas 1 contains a κ^3 As coordinated intact cyclotetramer (EtAsS)₄, ring cleavage leads to the chain anion Et₄As₄S₅²⁻, stabilised as a bridging hexadentate ligand in 2. Reaction of

Our recent studies on the coordination properties of ethylcycloarsoxane (C₂H₅AsO)_n, $n = 4 - 6^{[1-3]}$ have demonstrated that such ambidentate macrocycles are capable of acting as ionophores for alkali metal cations in a manner similar to classical crown ethers^[2]. Alkylarsoxanes (RAsO)_n (R = Me, Et) exhibit dynamic reorganisation equilibria between different cyclic oligomers in solution (e.g. $CCl_4^{[4]}$) and the ring size in the sandwich complexes [M{cyclo- $(C_2H_5AsO)_n$]2]SCN (M = Na, n = 4; M = K, n = 5)^[2] is ostensibly controlled by the radius of the central cation. A metal-mediated ring expansion from the predominant trimers and tetramers has also been observed for the carbonyl transition metal complexes $[{M(CO)_3}_2 {cyclo} - (RAsO)_6]]$ $(M = Mo, R = Me^{[5]}, Et^{[1]}; M = Cr, W, R = Et^{[1]})$, in which M(CO)₃ groups are coordinated facially by the upper and lower three arsenic atoms of a flattened As_6O_6 cuboctahedron.

These findings have prompted us to investigate the complexing ability of the analogous cycloarsathiane $(C_2H_5AsS)_n$, which may be compared with macrocyclic thioethers, a class of ligands of considerable current interest^[6]. Although the preparation of alkylarsathianes (RAsS)_n by reaction of RAsCl₂ with H₂S was reported in the last century^[7] it is only recently that isolated examples have been structurally characterized. An eight-membered As₄S₄ crown with approximately $C_{4\nu}$ ring symmetry has been established^[8-11] for the tetramers (CH₃AsS)₄, (tBuAsS)₄, (PhAsS)₄, and (C₂H₅AsS)₄. DiMaio and Rheingold have found that treatment of $(CH_3As)_5$ with S_8 in the presence of $Mo(CO)_6$ in toluene at 125 °C leads to metal-assisted formation of a mixture of (CH₃AsS)₃ and (CH₃AsS)₄, which could be separated by column chromatography^[8]. The complex $[Mo(CO)_3(Me_6As_6S_3)]$, with a nine-membered partially sulphurated arsenic ring, was obtained as a by-product of the above reaction. These authors also reported the reaction of $[{MoCp(CO)_3}_2]$ (Cp = C₅H₅) with (CH₃AsS)_n in tolu MCl_3 with cyclo- $(EtAsS)_n$ in toluene in a Carius tube enables the metal-mediated temperature controlled assembly of the novel 16- and 14-membered macrocyclic hexadentate As-S ligands in $[M\{cyclo-(Et_6As_8S_{10})\}]$ (3: M = Os; 4: M = Ru) and $[Ru\{cyclo-(Et_4As_6S_{10})\}]$ (5). The structures of the products were established by X-ray crystallography.

ene in a Carius tube at $125 \,^{\circ}$ C, which produces the novel triple-decker sandwich [(CpMo)₂(μ -As₃)(μ -AsS)] and a number of naked arsenic clusters in low yield. However, no evidence was found for the formation of coordinated cyclo-arsathianes with either the Mo(CO)₃ or the MoCp fragment, suggesting that a metal-mediated ring expansion may well be less facile for cycloarsathianes than for cycloarsoxanes. We now present the transition metal complex [RuCl₂{*cyclo*-(C₂H₅AsS)₄}(Ph₃P)] (1), which contains an intact coordinated cycloarsathiane, and provide examples for the metal-assisted assembly of novel chain and macrocyclic As-S ligands from (C₂H₅AsS)_n.

Results

The work of DiMaio and Rheingold indicates that cycloarsathianes can be expected to undergo As-S bond cleavage followed by reassembly into new structures in the coordination sphere of transition metal carbonyls at elevated temperature. This prompted us to investigate the reaction of $[RuCl_2(Ph_3P)_3]$ with cyclo- $(C_2H_5AsS)_n$ in equimolar ratio (n = 4) at room temperature in the expectation that a coordinated cycloarsathiane might be isolable under mild reaction conditions. A ³¹P-NMR spectrum of the CH₂Cl₂ reaction solution after 12 h contained no less than 11 resonances in the range $\delta = 18.91 - 64.06$ in addition to the signals of the starting compound and free Ph₃P. Attempts to separate components of the mixture by column chromatography over alumina or silica were unsuccessful. However the monomeric complex $[RuCl_2 \{cyclo-(C_2H_5AsS)_4\}(Ph_3P)]$ (1), as the OC-6-43 stereoisomer, could be obtained as a red crystalline product in satisfactory yield by covering the CH₂Cl₂ solution with hexane, 1 crystallizes together with a disordered CH_2Cl_2 molecule (site occupation factor 0.5) in a monoclinic unit cell and contains an intact (C₂H₅AsS)₄ ligand. To our knowledge, only one previous example of a coordinated cycloarsathiane has been reported, namely

FULL PAPER

 $[Ag{cyclo-(C_2H_5AsS)_4}_2]CF_3SO_3$, in which the silver atom exhibits a remarkable quadratic-antiprismatic geometry^[11]. In contrast to the crown conformation of the tetradentate eight-membered $(AsS)_4$ ring in this Ag(I) complex cation, a boat-chair conformation is observed for the tridentate $(C_2H_5AsS)_4$ ligand in complex 1 (Figure 1). The endocyclic As-E-As angles (E = O, S) are much narrower for the heavier chalcogen in cyclic oligomers of the type (RAsE)_n. For instance, an average As-S-As angle of 94(1)° was found for $(CH_3AsS)_n$ $(n = 3, 4^{[8]})$, a value which is 23° smaller than for the average As-O-As angle in [(mesityl)AsO]₄^[12]. The narrowness of the As-S-As angles in the (C₂H₅AsS)₄ ligand allows the formation of two fourmembered chelate rings in 1 with Ru(1)-As(2) as the shared central bond. An analogous coordination of neighbouring As atoms to the same metal atom is prevented in cycloarsoxane complexes by the much larger As-O-As angles. Instead, facial coordination can be achieved for cycloarsoxanes by employment of every second As atom in a twelve-membered (AsO)₆ ring, as in $[{M(CO)_3}_2 {cyclo (C_2H_5AsO_6)$ (M = Cr, Mo, W^[1]). The presence of a pronounced degree of ring strain in the four-membered chelate rings of 1 is apparent from differences in the As-S-As angles of the coordinated cycloarsathiane. Whereas those at S(1) and S(2) [84.0(1) and 83.9(1)°] are markedly narrowed in comparison to $(C_2H_5AsS)_4$ [96.6(9)°] a widening to $98.6(1)^{\circ}$ is observed for the angles at S(3) and S(4) in the chair-shaped six-membered chelate ring containing As(1), As(4), and As(3). An analogous trend can be established for the Ru-As-S angles, for which contrasting average values of 99.4(4) and 125(2)° are found for the four- and six-membered chelate rings. Further evidence for considerable strain in the four-membered rings is provided by their very narrow endocyclic As-Ru-As angles of 77.2(1) and $76.8(1)^\circ$, which are in striking contrast to the wide angle of 97.8(1)° for As(1)-Ru-As(3). Significant widening is also observed for the S-As-S angle at the bridgehead atom As(2), its value being 107.1(1) as opposed to average values of 102.6(5) for the remaining As atoms in 1 or $103.2(6)^{\circ}$ for the cycloarsathiane (C₂H₅AsS)₄ itself^[11]. The As-S distances in the $(AsS)_4$ ring range from 2.238(3) [As(1)-S(4)]to 2.274(3) Å [As(3)-S(2)] and may be regarded as typical for such bonds in cycloarsathianes for which average values of 2.26(1) in $(CH_3AsS)_4$ and 2.248(4) Å in $(C_2H_5AsS)_4$ have been established. A *trans* influence of the π -acceptor ligand PPh₃ is apparent for Ru(1)-As(2), which is significantly longer [2.446(2) Å] than the Ru–As bonds opposite to the chloride ligands Cl(1) and Cl(2) [2.391(1), 2.407(2) Å].

The remarkably wide Ru-As-C angles of 126.1(3) and 124.4(3) for As(1) and As(2) and particularly 141.3(3)° for As(2) clearly indicate that a facial κ^3 As coordination would be impossible for a cyclotrimer (C₂H₅AsS)₃. However, both geometrical [e.g. an OC-6-34 arrangement with PPh₃ *trans* to As(1)] and linkage isomers [e.g.s κ^3 As¹,S²,As⁴ or κ^3 As¹,As²,S³ coordination modes] should be possible for 1 and the ¹H- and ³¹P-NMR spectra of the complex indicate that dynamic equilibria are rapidly established in CDCl₃ solution at room temperature (Figure 2). Thus, the ³¹P- Figure 1. Molecular structure of 1. Selected bond lengths [Å] and angles [°]: Ru(1)-As(1) 2.391(1), Ru(1)-As(2) 2.446(2), Ru(1)-As(3) 2.407(2), Ru(1)-Cl(1) 2.433(3), Ru(1)-Cl(2) 2.429(3), Ru(1)-P(1) 2.357(3); As(1)-Ru(1)-As(2) 77.2(1), As(3)-Ru(1)-As(2) 76.8(1), As(1)-Ru(1)-As(3) 97.8(1)

NMR spectrum, taken 12 h after the sample was dissolved, contains the seven resonances between $\delta = 18.91$ and 33.55 previously observed for the reaction mixture.

Figure 2. Signals of the ethyl protons in the ¹H-NMR spectrum of 1 taken 12 h after the complex was dissolved in CDCl₃

In contrast to the retention of an intact cyclotetramer observed in 1, treatment of $[\text{ReBr}(\text{CO})_5]$ with $(C_2H_5\text{AsS})_n$ in toluene at reflux leads to As-S bond cleavage and formation of the novel chain $\text{Et}_4\text{As}_4\text{S}_5^{--}$, which is stabilised as a bridging hexadentate ligand in the dinuclear complex $[\{\text{Re}(\text{CO})_3\}_2\{\mu-(\text{Et}_4\text{As}_4\text{S}_5)\}]$ (2, Figure 3). A possible reaction mechanism would involve an initial bidentate coordination of each of the Re atoms by alternating As atoms of the preferred cyclooligomer $(C_2H_5\text{As})_4$, followed by nucleophilic attack of S^{2-} on As(1) or As(4). The driving force for the formation of 2 is presumably provided by the stability of the resulting Re-S(thiolate) bonds. The As-S(thiolate) distances of 2.167(4) and 2.154(4) Å are, as expected, significantly shorter than the bridging As-S(As) distances in the range 2.217(5) - 2.285(5) Å. Interestingly a marked widening is observed for the central As-S-As angle $[As(2)-S(3)-As(3), 99.2(2)^{\circ}]$ in comparison to the average value of 96.6(9)° established for $(C_2H_5AsS)_4$. The relevant As-S bonds participate in two six-membered chelate rings. In contrast, the As(1)-S(2)-As(2) [91.3(2)°] and As(3)-S(4)-As(4) [92.2(2)°] angles, which are endocyclic to five-membered chelate rings, are somewhat smaller than in the free cycloarsathianes. With the exception of the As-Re-As angles [100.1(1), 99.2(1)°] little deviation $[85.3(4)-92.0(5)^{\circ}]$ from the idealised octahedral value is observed for the rhenium centres. 2 exhibits effectively C_2 symmetry in the crystal lattice and this symmetry is retained in solution as confirmed by the presence of only two resonances for the CH₂ and CH₃ groups in both the ¹H- and ¹³C-NMR spectra.

Figure 3. Molecular structure of **2**. Selected bond lengths [Å] and angles [°]: Re(1)-As(2) 2.552(2), Re(1)-As(4) 2.571(2), Re(1)-S(1) 2.485(5), Re(2)-As(1) 2.561(2), Re(2)-As(3) 2.555(2), Re(2)-S(5) 2.493(4), As(1)-S(1) 2.167(4), As(1)-S(2) 2.285(5), As(4)-S(5) 2.154(4), As(4)-S(4) 2.284(4), As(2)-S(2) 2.218(6), As(2)-S(3) 2.235(4), As(3)-S(3) 2.242(4), As(3)-S(4) 2.217(5); As(1)-S(2)-As(2) 91.3(2), As(2)-S(3) 99.2(2), As(1)-S(4)-As(4) 92.2(2)

The increased degree of π back bonding to the carbonyl ligands in **2** in comparison to the starting compound [ReBr(CO)₅] is reflected in the observed shifts of the v(CO) frequencies. For **2** values of 2038, 1980, 1958, and 1819 cm⁻¹ were recorded, which are on average significantly narrower than in [ReBr(CO)₅]^[13] with values of 2150, 2044, and 1985 cm⁻¹. The ¹³C-NMR chemical shifts for **2** appear also at lower field compared to the *trans* sited carbonyl groups in [ReBr(CO)₅] (**2**: $\delta = 186.34$, 187.19, 188.80; [ReBr(CO)₅]^[14] $\delta = 177.0$). A similar phenomenon was previously observed in the compounds [{M(CO)₃}₂{*cyclo*-(EtAsO)₆}]^[1] (M = Cr, Mo, W).

Small As–S ligands such as As_2S , As_2S_2 , and As_2S_3 have been prepared by reaction of As_4S_4 and As_4S_3 with reactive transition metal complexes^[15,16]. Treatment of As_4S_4 with MoS_4^{2-} allows the isolation of the complex anion $[Mo_2O_2S_2(\mu-As_4S_{12})]^{2-}$, in which the familiar $Mo_2O_2S_2^{2+}$ fragment is strapped by a tetradentate $As_4S_{12}^{4-}$ ligand containing a central As_2S_6 eight-membered ring^[17]. Our preparation of **2** with its bridging $Et_4As_4S_5^{2-}$ unit suggests that cycloarsathianes could offer a copious source of novel As-S ligands in carbonyl transition metal complexes.

Macrocyclic As-S Ligands

In view of the well-known stability of M-S(thiolate)bonds for transition metals M in lower oxidation states, it was of interest to establish whether treatment of $(C_2H_5AsS)_n$ with transition metal halides such as OsCl₃ or RuCl₃ can also lead to a metal-mediated assembly of As-S ligands. We found that the reaction of MCl_3 (M = Os, Ru) with $(C_2H_5AsS)_n$ in toluene in a Carius tube at respectively 140°C (70 h) or 105°C (24 h) leads to the formation of the coloured crystalline products 3 and 4, which are insoluble in all common organic solvents. Attempts to separate further soluble products from the reaction mixture by column chromatography were unsuccessful. Compounds 3 and 4 are isostructural and crystallize in the monoclinic space group C2/c. As the crystal quality of 4 was poor, structural details will only be discussed for the Os(II) complex 3 (Figure 4), which contains the novel hexadentate macrocyclic ligand $Et_6As_8S_{10}^{2-}$. Bond angles in the range $80.5(2)-101.2(1)^{\circ}$ are observed for the distorted octahedral coordination sphere at the central metal atom. Limiting values are provided by the As(3) - Os(1) - S(10)and As(7)-Os(1)-S(9) angles [80.5(2), 82.3(3)°], which belong to five-membered chelate rings, and the As(1)-Os(1)-As(3) and As(5)-Os(1)-As(7)angles $[101.2(1), 100.5(1)^{\circ}]$, which are endocyclic to six-membered chelate rings. As-S-As angles in the 16-membered (AsS)₈ ring may be compared with the average value of 96.6(9)° in $(C_2H_5AsS)_4$, with those in the five-membered chelate rings in the range $95.3(4) - 97.9(4)^{\circ}$ being similar, those in sixmembered chelate rings in the range $99.6(4) - 101.7(4)^{\circ}$ wider. In contrast, the S-As-S angles $[94.3(2)-100.7(4)^{\circ}]$ are narrowed in comparison to the average value of 103.2(6) for $(C_2H_5AsS)_4$. As is to be expected, the As-S(thiolate) distances to the cis-coordinated sulphur atoms S(9) and S(10) [2.194(11), 2.212(10) Å] are shorter than the bridging As-S(As) distances in the range 2.234(9)-2.286(9) Å, which are typical for As-S rings and cages. Trans influences are apparent for the bond distances in the Os coordination sphere, with the cis-sited Os(1)-As(1) and Os(1)-As(5) bonds [2.414(4), 2.412(4) Å] being significantly shorter than the trans-sited Os(1)-As(3) and Os(1)-As(7) bonds [2.450(4), 2.449(3) Å].

The reduction of M(III) to M(II) (M = Os, Ru) required for the preparation of complexes 3 and 4 poses the question as to the nature of the accompanying oxidation. It seems reasonable to assume that S-S bond formation will be involved and this hypothesis is, at least, partially substantiated by the isolation of a second Ru(II) complex [Ru{*cyclo*-(Et₄As₆S₁₀)}] (5), obtained by employment of a longer reaction time (70 h) at higher temperature (140 °C).

FULL PAPER

Figure 4. Molecular structure of 3. Selected bond lengths [Å] and angles [°]: Os(1)-As(1) 2.414(4), Os(1)-As(3) 2.450(4), Os(1)-As(5) 2.412(4), Os(1)-As(7) 2.449(3), Os(1)-S(9) 2.400(11), Os(1)-S(10) 2.414(9), As(4)-S(10) 2.212(10), As(8)-S(9) 2.194(11)

Scheme 2. $Et_6As_8S_{10}^{2-}$ and $Et_4As_6S_{10}^{2-}$

An analogous Os(II) complex could not be prepared, even at considerably higher temperature (200 °C). The novel 14membered ring of the hexadentate macrocyclic ligand $Et_4As_6S_{10}^{2-}$, which exhibits crystallographic C_{2h} symmetry with As(2) and S(1) in a mirror plane, is smaller than in 3/4 and contains two S-S bonds. Disorder is observed for the sulphur atoms and the ethyl group attached to As(1); site occupation factors of 0.5 were assigned to the atoms S(21)/S(22), S(31)/S(32), C(11)/C(12), and C(21)/C(22), which were refined under bond length constraints. The molecular dimensions of the macrocyclic ligand will therefore not be discussed in detail. In contrast to 3/4, the thiolate sulphur atoms S(1)/S(1a), are sited *trans* to one another in complex 5, which contains only five-membered chelaterings. The 14-membered ring is effectively perfectly dimensioned for octahedral coordination of Ru(II), as evidenced by the similar Ru-As and Ru-S distances [2.391(2), 2.378(6) A] and the very minor deviations $[88.7(1)-91.3(1)^{\circ}]$ from the idealised octahedral angle. This finding is in accordance with the assumed relative thermodynamic stability of 5 in comparison to 4, which can be presumed to be an intermediate product on the route to the former complex.

Figure 5. Molecular structure of 5. Selected bond lengths [Å] and angles [°]: Ru(1)-As(1) 2.391(2), Ru(1)-S(1) 2.378(6), As(2)-S(1) 2.181(6)

Our present work indicates that intact cycloarsathianes may be stabilised in the coordination sphere of transition metals under mild conditions. At elevated temperature ring cleavage and metal-assisted assembly can afford novel macrocyclic ligands, particularly well-adapted for the coordination of the directing metal atom.

Experimental

All manipulations were carried out in an Ar atmosphere in carefully dried solvents. – FAB MS: Fisons VG Autospec with 3-nitrobenzyl alcohol as matrix. – ¹H, ¹³P NMR: Bruker AM 400. – FT-IR^[18]; Perkin-Elmer 1700 and 1760. – Elementary analyses: Carlo Erba 1106. – *cyclo*-(C₂H₅AsS)_n was prepared by the reaction of (C₂H₅AsO)_n with H₂S as described previously^[11].

 $[RuCl_2 \{cyclo-(C_2H_5AsS)_4\}(Ph_3P)]$ (1): A solution of cyclo-(C_2H_5AsS)_n (0.120 g, 0.22 mmol for n = 4) and $[RuCl_2(Ph_3P)_3]^{[19]}$ (0.211 g, 0.22 mmol) in 5 ml of CH2Cl2 was stirred at room temperature for 2 h. After a few minutes the colour changed from brown to deep-red. The volume was reduced to 1.5 ml and the solution covered with hexane to afford 1 as a red crystalline product. Yield 0.049 g (21%). $- C_{26}H_{35}As_4Cl_2PRuS_4$ (978.5): calcd. C 31.9, H 3.6; found C 32.8, H 4.4. - FAB MS; m/z (%): 980 (2) $[M^+]$, 943 (7) $[M^+ - Cl]$, 839 (3) $[M^+ - Cl - C_2H_5As]$. – IR (KBr): $\tilde{v} = 1483 \text{ cm}^{-1}$ (s), 1450 (s), 1434 (vs), 1212 (s), 1090 (s), 1030 (s), 753 (vs), 729 (vs), 699 (vs), 527 (vs), 512 (vs), 496 (s), 409 (vs), 383 (vs), 351 (vs).

 $[{Re(CO)_3}_2{\mu-(Et_4As_4S_5)}]$ (2): A solution of cyclo- $(C_2H_5AsS)_n$ (0.262 g, 0.48 mmol for n = 4) and [ReBr(CO)₅] (0.087 g, 0.21 mmol) was heated with stirring in 10 ml of toluene at reflux for 5 min. The volume was reduced to 2 ml and the yellow solution covered with hexane to afford 2 as a yellow crystalline product. Yield 0.051 g (43%). - C₁₄H₂₀As₄O₆Re₂S₅ (1116.7): calcd. C 15.1, H 1.8; found C 14.9, H 1.5. – FAB MS; m/z (%): 1117 (1) [M⁺], $1089(1) [{Re(CO)_3}_2(Et_3As_4S_5)]^+, 818(1) [{Re(CO)_3}(Et_4As_4S_5)]^+,$ 547 (7) $[(Et_4As_4S_5)]^+$, 515 (10) $[(Et_4As_4S_4)]^+$, $- {}^{1}H$ NMR (CDCl₃): $\delta = 1.32$ (t, 6H, CH₂CH₃), 1.35 (t, 6H, CH₂CH₃), 2.21 (q, 4H, CH_2CH_3), 2.37 (q, 4H, CH_2CH_3). – ¹³C NMR (CDCl₃): $\delta =$ 10.74, 12.35 (2 s, CH₂CH₃), 35.13, 36.01 (2 s, CH₂CH₃), 186.34, 187.19, 188.80 (3 s, C=O). – IR (KBr): $\tilde{v} = 2038$ cm⁻¹ (vs), 1980 (s), 1958 (vs), 1919 (vs) (C=O), 1449 (m), 1029 (m), 718 (w), 610 (m), 590 (m), 511 (w), 467 (w), 452 (w), 427 (m), 379 (m), 348 (m).

 $[Os \{cyclo-(Et_6As_8S_{10})\}]$ (3): OsCl₃ (0.135 g, 0.45 mmol) was combined in a Carius tube (Duran glass, medium-walled 4 mm, diameter 16 mm, length 12 cm, volume approximately 10 cm³) with $cyclo-(C_2H_5AsS)_n$ (0.497 g, 0.91 mmol for n = 4) dissolved in 1.5 ml of toluene. The tube was flame sealed, heated at 140 °C for 70 h and allowed to cool slowly to room temperature. After opening, the solid product was filtered off and washed with methanol to afford red-brown 3. Yield 0.098 g (17%). - C₁₂H₃₀As₈O₅S₁₀ (1284.5): calcd. C 11.2, H 2.3; found C 10.0, H 1.4. - IR (KBr): $\tilde{v} = 1445 \text{ cm}^{-1}$ (s), 1373 (s), 1220 (s), 1029 (s), 722 (s), 710 (s), 403 (s), 389 (s), 347 (s).

 $[Ru\{cyclo-(Et_{\delta}As_{8}S_{10})\}]$ (4): RuCl₃ · 3 H₂O (0.104 g, 0.40 mmol) was combined in a Carius tube (see 3 above) with cyclo- $(C_2H_5AsS)_n$ (0.455 g, 0.84 mmol for n = 4) dissolved in 1.5 ml of toluene. The tube was flame sealed, heated at 105 $^{\rm o}{\rm C}$ for 24 h and allowed to cool slowly to room temperature. After opening, the yellow-brown solid was filtered off and washed with methanol to afford 4. Yield 0.321 g (64%). $- C_{12}H_{30}As_8RuS_{10}$ (1195.5): calcd. C 12.1, H 2.5; found C 12.3, H 2.1. – IR (KBr): $\tilde{v} = 1445 \text{ cm}^{-1}$ (s), 1374 (s), 1220 (s), 1029 (s), 722 (s), 711 (s), 404 (s), 387 (s), 347 (s).

 $[Ru\{cyclo-(Et_4As_6S_{10})\}]$ (5): RuCl₃ · 3 H₂O (0.067 g, 0.26 mmol) was added to a 1.5 ml toluene solution of $cyclo-(C_2H_5AsS)_n$ (0.290 g, 0.53 mmol for n = 4) in a Carius tube (see 3 above). The tube was flame sealed, heated to 140°C for 70 h and allowed to cool slowly to room temperature. After opening, the solid product was filtered off and washed with methanol to afford red-coloured crystals of 5. Yield 0.067 g (25%). $- C_8H_{20}S_{10}As_6Ru$ (987.4): calcd. C 9.7, H 2.0; found C 9.8, H 1.6. – IR (KBr): $\tilde{v} = 1436 \text{ cm}^{-1}$ (s), 1372 (m), 1218 (s), 1027 (s), 721 (s), 696 (s), 638 (s), 543 8s), 521 (s), 403 (s), 387 (m), 347 (m).

X-Ray Structural Analyses: Siemens P4 diffractometer, graphite monochromator, Mo- K_{α} radiation ($\lambda = 0.71073$ Å), SHELXTL PLUS programs^[17] for structure solution by direct methods and refinement by full-matrix least-squares. Semi-empirical absorption corrections were applied to the intensity data by use of ψ -scans. Hydrogen atoms were included at calculated positions with group

 $1 \cdot 1/2$ CH₂Cl₂: C₂₆H₃₅As₄Cl₂PRuS₄ · 0.5 CH₂Cl₂, M = 1020.9, monoclinic, space group $P2_1/n$, a = 12.293(4), b = 20.744(5), c =15.090(5) Å, $\beta = 92.58(3)^\circ$, V = 3844(3) Å³, Z = 4, $D_{calcd} = 1.764$ $g \cdot cm^{-3}$, $\mu = 4.31 \text{ mm}^{-1}$. Crystal size $0.44 \times 0.52 \times 0.62 \text{ mm}$; ω scan, scan range: $2\Theta \le 55^{\circ}$ ($0 \le h \le 15, 0 \le k \le 26, -19 \le l \le 19$), 9338 reflections collected, 8710 symmetry-independent reflections (R_{int} = 0.032), max./min. transmission: 0.108/0.072; 369 parameters refined; $w^{-1} = \sigma^2(F_0) + 0.0001 F_0^2$, R = 0.057, $R_w = 0.054$ for 4772 reflections with $F_{0}^{2} > 2\sigma(F_{0}^{2})$; largest difference peak: 1.25 $e^{A^{-3}}$. Anisotropic temperature factors for the Ru, As, Cl, S, and P atoms

2: $C_{14}H_{20}As_4O_6Re_2S_5$, M = 1116.7, triclinic, space group $P\bar{1}$, a = 9.528(2), b = 10.796(2), c = 14.507(3) Å, $\alpha = 77.46(2), \beta =$ 82.94(2), $\gamma = 73.10(1)^\circ$, $V = 1390.9(5) \text{ Å}^3$, Z = 2, $D_{\text{calcd.}} = 2.666 \text{ g}$ \cdot cm⁻³, μ = 13.82 mm⁻¹. Crystal size: 0.20 × 0.30 × 0.32 mm; ω scan, scan range: $2\Theta \le 50^{\circ}$ ($0 \le h \le 11$, $-11 \le k \le 12$, $-16 \le l$ ≤ 17), 4874 symmetry-independent reflections collected; max./min. transmission: 0.072/0.037; 194 parameters refined; $w^{-1} = \sigma^2(F_o) + \sigma^2(F_o)$ 0.0001 F_{o}^2 , R = 0.054, $R_w = 0.050$ for 3788 reflections with $F_o^2 >$ $2\sigma(F_{0}^{2})$; largest difference peak: 1.87 eÅ⁻³. Anisotropic temperature factors for the Re, As, and S atoms.

3: $C_{12}H_{30}As_8OsS_{10}$, M = 1284.5, monoclinic, space group C2/c, a = 35.664(7), b = 10.738(2), c = 17.688(4) Å, $\beta = 107.18(2)^{\circ}, V =$ 6472(2) Å³, Z = 8, $D_{\text{calcd.}} = 2.637 \text{ g} \cdot \text{cm}^{-3}$, $\mu = 12.71 \text{ mm}^{-1}$. Crystal size: $0.28 \times 0.40 \times 0.52$ mm; ω -scan, scan range: $2\Theta \le 47.5$ (0 $\leq h \leq 40, 0 \leq k \leq 12, -20 \leq l \leq 18$, 5233 reflections collected, 4859 symmetry-independent reflections ($R_{int} = 0.054$); max./min. transmission: 0.024/0.005; 241 parameters refined; $w^{-1} = \sigma^2(F_0) + \sigma^2(F_0)$ 0.0001 F_{o}^2 , R = 0.086, $R_w = 0.084$ for 2926 reflections with $F_o^2 >$ $2\sigma(F_0^2)$; largest difference peak: 3.13 eÅ⁻³. Anisotropic temperature factors for the Os, As, and S atoms.

4: $C_{12}H_{30}As_8RuS_{10}$, M = 1195.5, monoclinic, space group C2/c, a = 35.778(7), b = 10.725(2), c = 17.685(6) Å, $\beta = 107.24(3)^{\circ}, V =$ 6481(4) Å³, Z = 8, $D_{calcd.} = 2.392 \text{ g} \cdot \text{cm}^{-3}$, $\mu = 9.25 \text{ mm}^{-1}$. 4 is isostructural with 3.

5: $C_8H_{20}As_6RuS_{10}$, M = 987.4, orthorhombic, space group *Cmca*, a = 18.401(6), b = 13.690(5), c = 10.609(4) Å, V = 2672(1)Å³, Z = 4, $D_{\text{calcd.}} = 2.454 \text{ g} \cdot \text{cm}^{-3}$, $\mu = 8.74 \text{ mm}^{-1}$. Crystal size: $0.14 \times 0.40 \times 0.46$ mm; ω -scan, scan range: $2\Theta \le 50^{\circ}$ ($-21 \le h$ $\leq 0, 0 \leq k \leq 16, -12 \leq l \leq 0$, 1335 symmetry-independent reflections collected; max./min. transmission: 0.112/0.052; 80 parameters refined; $w^{-1} = \sigma^2(F_0) + 0.0004 F_0^2$, R = 0.063, $R_w = 0.069$ for 751 reflexitons with $F_{0}^{2} > 2\sigma(F_{0}^{2})$; largest difference peak: 1.32 eÅ⁻³. The coordination sphere of As(1) is disordered; site occupation factors of 0.5 were employed for the atoms C(11)/C(12), C(21)/C(22) (ethyl group), S(21)/S(22) and S(31)/S(32). Anisotropic temperature factors for the Ru, As, and S atoms.

- ^[1] W. S. Sheldrick, T. Häusler, Z. Naturforsch. Teil B 1993, 48, 1069.
- [2] W. S. Sheldrick, T. Häusler, Z. Anorg. Allg. Chem. 1993, 619, 1984
- ^[3] W. S. Sheldrick, T. Häusler, Z. Anorg. Allg. Chem. 1994, 620, 334.
- ^[4] M. Durand, J.-P. Laurent, J. Organomet. Chem. 1974, 77, 225.
- [5]
- ^[5] A. L. Rheingold, A.-J. DiMaio, Organometallics 1986, 5, 393.
 ^[6] S. R. Cooper, S. C. Rawle, Struct. Bonding (Berlin) 1990, 72, 1; A. J. Blake, M. Schröder, Adv. Inorg. Chem. 1990, 35, 1.
- [7] A. von Baeyer, Liebigs Ann. 1858, 107, 279.
- [8] A. J. DiMaio, A. L. Rheingold, Inorg. Chem. 1990, 29, 798.
- [9] J. T. Share, W. T. Pennington, A. W. Cordes, Acta Crystallogr. Sect. C 1988, 41, 1831.

FULL PAPER

- [^{10]} G. Bergerhoff, H. Namgung, Z. Kristallogr. 1979, 150, 209.
 [^{11]} T. Häusler, W. S. Sheldrick, Z. Naturforsch. Teil B 1994, 49,
- 1215. ^[12] A. M. Arif, A. H. Cowley, M. Pakulski, J. Chem. Soc., Chem.
- Commun. 1987, 165. ^[13] E. W. Abel, I. S. Butler, *Trans. Farad. Soc.* 1967, 63, 45. ^[14] M. J. Webb, W. A. G. Graham, *J. Organomet. Chem.* 1975, 65, 119.
- ^[15] M. DiVaira, P. Stoppioni, Coord. Chem. Rev. 1992, 120, 259; M. DiVaira, P. Stoppioni, M. Perazzini, Inorg. Chim. Acta 1987, 132, 37.
- ^[16] I. Bernal, H. Brunner, W. Meier, H. Pfisterer, J. Wachter, M. L. Ziegler, Angew. Chem. 1984, 96, 428; H. Brunner, H. Kaver-mann, B. Nuber, J. Wachter, M. L. Ziegler, Angew. Chem. 1986, 98, 551; H. Brunner, L. Poll, J. Wachter, B. Nuber, J. Organomet. Chem. 1994, 471, 117.
- ^[17] G. A. Zank, T. B. Rauchfuss, S. R. Wilson, J. Am. Chem. Soc. 1984, 106, 7621.
- ^[18] T. Häusler, Dissertation, Ruhr-Universität Bochum, 1995.
- ^[19] R. K. Poddar, U. Agarwala, *Indian J. Chem.* 1971, 9, 477.
 ^[20] SHELXTL PLUS, Siemens Analytical X-ray Instruments, Madison, Wi; 1991.
- ^[21] Further details of the crystal structure investigations are available on request from Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen, Germany, with specification of the deposition numbers CSD-380078-380081, the names of the authors, and the journal reference.

[95139]