Metal-Assisted Assembly of Chain and Macrocyclic As-S Ligands from **Ethylcycloarsathiane (C₂H₅AsS)**_n

Thomas Hausler and William S. Sheldrick"

Lehrstuhl für Analytische Chemie, Ruhr-Universität Bochum, D-44780 Bochum

Received September 12, 1995

Key Words: Arsenic-sulphur ligands *I* Macrocyclic ligands *I* Ethylcycloarsathiane / Ruthenium complexes

Treatment of $\{cyclo - (EtAsS)_n\}$ with $[RuCl_2(Ph_3P)_3]$ and $[Re- MCl_3$ with $cyclo - (EtAsS)_n$ in toluene in a Carius tube enables Br(CO)₅] affords the respective complexes $\text{[RuCl}_2\text{/cyclo-}$ the metal-mediated temperature controlled assembly of the $(EtASS)_4|(Ph_3P)|$ **(1)** and $[(RecCO)_3|_2[µ-(Et_4As_4S_5)]$ **(2)**, Whe- novel 16- and 14-membered macrocyclic hexadentate As-S reas **1** contains a κ^3 As coordinated intact cyclotetramer ligands in $[M(cyclo-Et_6As_8S_{10})]$ (3: $M = Os$; $4: M = Ru$) and $(EtASS)_{4}$, ring cleavage leads to the chain anion $Et_4As_4S_5^{2-}$, $[Ru\{cycle-(Et_4As_6S_{10})\}]$ (5). The structures of the products stabilised as a bridging hexadentate ligand in **2.** Reaction **of** were established by X-ray crystallography.

Our recent studies on the coordination properties of ethylcycloarsoxane $(C_2H_5AsO)_n$, $n = 4-6^{[1-3]}$ have demonstrated that such ambidentate macrocycles arc capable of acting as ionophores for alkali metal cations in a manner similar to classical crown ethers^[2]. Alkylarsoxanes $(RAsO)_n$ $(R = Me, Et)$ exhibit dynamic reorganisation equilibria between different cyclic oligomers in solution (e.g. $CCI₄^[4]$) and the ring size in the sandwich complexes $[M\{cycle]$ $(C_2H_5AsO)_n$ ₂]SCN (M = Na, n = 4; M = K, n = 5)^[2] is ostensibly controlled by the radius of the central cation. A metal-mediated ring expansion from the predominant trimers and tetramers has also been observed for the carbonyl transition metal complexes $[\{M(CO)_3\}_2\{cycle-(RAsO)_6\}]$ $(M = Mo, R = Me^{[5]}, Et^{[1]}; M = Cr, W, R = Et^{[1]}), in$ which M(CO)₃ groups are coordinated facially by the upper and lower three arsenic atoms of a flattened As_6O_6 cuboctahedron.

These findings have prompted us to investigate the complexing ability of the analogous cycloarsathiane $(C_2H_5AsS)_n$, which may be compared with macrocyclic thioethers, a class of ligands of considerable current interest^[6]. Although the preparation of alkylarsathianes $(RAsS)_n$ by reaction of RAsCl₂ with H_2S was reported in the last century^[7] it is only recently that isolated examples have been structurally characterized. An eight-membered $As₄S₄$ crown with approximately C_{4v} ring symmetry has been established^[8-11] for the tetramers $(CH_3AsS)_4$, $(H\text{uAsS})_4$, $(PhAsS)₄$, and $(C₂H₅AsS)₄$. DiMaio and Rheingold have found that treatment of $(CH_3As)_5$ with S_8 in the presence of $Mo(CO)₆$ in toluene at 125 °C leads to metal-assisted formation of a mixture of $(CH_3AsS)_3$ and $(CH_3AsS)_4$, which could be separated **by** column chromatographyl81. The complex $[Mo(CO)₃(Me₆As₆S₃)]$, with a nine-membered partially sulphurated arsenic ring, was obtained as a by-product of the above reaction. These authors also reported the reaction of $\left[\{\text{MoCp(CO)}_{3}\right]_{2}\right]$ (Cp = C₅H₅) with (CH₃AsS)_n in tolu-

ene in a Carius tube at 125° C, which produces the novel triple-decker sandwich $[(CpMo)_{2}(\mu-As_{3})(\mu-As_{5})]$ and a number of naked arsenic clusters in low yield. However, no evidence was found for the formation of coordinated cycloarsathianes with either the $Mo(CO)$, or the MoCp fragment, suggesting that a metal-mediated ring expansion may well be less facile for cycloarsathianes than for cycloarsoxanes. We now present the transition metal complex $\text{[RuCl}_2\{\text{cyclo}-(\text{C}_2\text{H}_5\text{AsS})_4\}(\text{Ph}_3\text{P})]$ (1), which contains an intact coordinated cycloarsathiane, and provide examples for the metal-assisted assembly of novel chain and macrocyclic As-S ligands from $(C_2H_5AS)_n$.

Results

The work of DiMaio and Rheingold indicates that cycloarsathianes can be expected to undergo As-S bond cleavage followed by reassembly into new structures in the coordination sphere of transition metal carbonyls at elevated temperature. This prompted us to investigate the reaction of $[RuCl_2(Ph_3P)_3]$ with cyclo- $(C_2H_5AsS)_n$ in equimolar ratio $(n = 4)$ at room temperature in the expectation that a coordinated cycloarsathiane might be isolable under mild reaction conditions. A $^{31}P\text{-NMR}$ spectrum of the CH₂Cl₂ reaction solution after 12 h contained no less than 11 resonances in the range $\delta = 18.91 - 64.06$ in addition to the signals of the starting compound and free Ph_3P . Attempts to separate components of the mixture by column chromatography over alumina or silica were unsuccessful. However the monomeric complex $\text{[RuCl}_{2}\$ (cyclo -(C₂H₅AsS)₄}(Ph₃P)] **(l),** as the OC-6-43 stereoisomer, could be obtained as a red crystalline product in satisfactory yield by covering the CH₂Cl₂ solution with hexane, 1 crystallizes together with a disordered CH_2Cl_2 molecule (site occupation factor 0.5) in a monoclinic unit cell and contains an intact $(C_2H_5AsS)_4$ ligand. To our knowledge, only one previous example of a coordinated cycloarsathiane has been reported, namely

FULL PAPER T. Häusler, W. S. Sheldrick

 $[Ag\{cycle-(C_2H_5AsS)_4\}_2]CF_3SO_3$, in which the silver atom exhibits a remarkable quadratic-antiprismatic geometry^[11]. In contrast to the crown conformation of the tetradentate eight-membered $(AsS)₄$ ring in this Ag(I) complex cation, a boat-chair conformation is observed for the tridentate $(C₂H₅AsS)₄$ ligand in complex 1 (Figure 1). The endocyclic As-E-As angles ($E = 0$, S) are much narrower for the heavier chalcogen in cyclic oligomers of the type (RAsE),.. For instance, an average $As-S-As$ angle of $94(1)^\circ$ was found for $(CH_3AsS)_n$ $(n = 3, 4^{[8]})$, a value which is 23° smaller than for the average $As-O-As$ angle in $[(mes$ ityl)AsO l_4 ^[12]. The narrowness of the As-S-As angles in the $(C_2H_5AsS)_4$ ligand allows the formation of two fourmembered chelate rings in 1 with $Ru(1)-As(2)$ as the shared central bond. An analogous coordination of neighbouring As atoms to the same metal atom is prevented in cycloarsoxane complexes by the much larger $As-O-As$ angles. Instead, facial coordination can be achieved for cycloarsoxancs by employment of every second As atom in a twelve-membered $(AsO)₆$ ring, as in $\frac{1}{3}M(CO)₃\frac{1}{2}cyclo (C_2H_5AsO)_6$] (M = Cr, Mo, W^[1]). The presence of a pronounced degree of ring strain in the four-membered chelate rings of **1** is apparent from differences in the As-S-As angles of the coordinated cycloarsathiane. Whereas those at S(1) and S(2) [84.0(1) and 83.9(1)^o] are markedly narrowed in comparison to $(C_2H_5AsS)_4$ [96.6(9)^o] a widening to 98.6(1)^o is observed for the angles at S(3) and S(4) in the chair-shaped six-membered chelate ring containing $As(1)$, As(4), and As(3). An analogous trend can be established for the Ru-As-S angles, for which contrasting average values of 99.4(4) and $125(2)^\circ$ are found for the four- and six-membered chelate rings. Further evidence for considerable strain in the four-membered rings is provided by their very narrow endocyclic As-Ru-As angles of 77.2(1) and $76.8(1)$ °, which are in striking contrast to the wide angle of 97.8(1) \degree for As(1)-Ru-As(3). Significant widening is also observed for the $S-As-S$ angle at the bridgehead atom As(2), its value being 107.1(1) as opposed to average values of 102.6(5) for the remaining As atoms in 1 or $103.2(6)^\circ$ for the cycloarsathiane $(C_2H_5AS)_4$ itself^[11]. The As-S distances in the $(AsS)₄$ ring range from 2.238(3) $[As(1)-S(4)]$ to 2.274(3) \AA [As(3)-S(2)] and may be regarded as typical for such bonds in cycloarsathianes for which average values of 2.26(1) in $(CH_3AsS)_4$ and 2.248(4) A in $(C_2H_5AsS)_4$ have been established. A *trans* influence of the π -acceptor ligand PPh₃ is apparent for Ru(1)-As(2), which is significantly longer $[2.446(2)$ Å than the Ru-As bonds opposite to the chloride ligands Cl(1) and Cl(2) $[2.391(1), 2.407(2)$ Å].

The remarkably wide $Ru-As-C$ angles of 126.1(3) and 124.4(3) for As(1) and As(2) and particularly $141.3(3)^\circ$ for As(2) clearly indicate that a facial κ^3 As coordination would be impossible for a cyclotrimer $(C_2H_5AsS)_3$. However, both geometrical [e.g. an OC-6-34 arrangement with PPh₃ trans to As(1)] and linkage isomers [e.g.s κ^3 As¹,S²,As⁴ or κ^3 As¹,As²,S³ coordination modes] should be possible for 1 and the 'H- and 31P-NMR spectra of the complex indicate that dynamic equilibria are rapidly established in $CDCI₃$ solution at room temperature (Figure 2). Thus, the **31P-** Figure 1. Molecular structure of 1. Selected bond lengths $\begin{bmatrix} \hat{A} \end{bmatrix}$ and angles $\begin{bmatrix} \hat{c} \end{bmatrix}$: $\begin{bmatrix} Ru(1) - As(1) & 2.391(1), & Ru(1) - As(2) & 2.446(2), \end{bmatrix}$ angles $[°]$: Ru(1)-As(1) 2.391(1), Ru(1)-As(2) 2.446(2), $Ru(1)-As(3)$ 2.407(2), Ru(1)-Cl(1) 2.433(3), Ru(1)-Cl(2) 2.429(3), Ru(1)-P(1) 2.357(3); As(1)-Ru(1)-As(2) 77.2(1), As(3)- $-Ru(1) - As(2)$ 76.8(1), As(1)-Ru(1)-As(3) 97.8(1)

NMR spectrum, taken 12 h after the sample was dissolved, contains the seven resonances between $\delta = 18.91$ and 33.55 previously observed for the reaction mixture.

Figure 2. Signals of the ethyl protons in the 'H-NMR spectrum of **¹**taken 12 h after the complex was dissolved in CDC13

In contrast to the retention of an intact cyclotetramer observed in **1**, treatment of $[ReBr(CO)_5]$ with $(C_2H_5AsS)_n$ in toluene at reflux leads to As-S bond cleavage and formation of the novel chain $Et_4As_4S_5^{2-}$, which is stabilised as a bridging hexadentate ligand in the dinuclear complex $[\{Re(CO)_3\}_2\{\mu$ - $(Et_4As_4S_5)\}]$ (2, Figure 3). A possible reaction mechanism would involve an initial bidentate coordination of each of the Re atoms by alternating **As** atoms of the preferred cyclooligomer $(C_2H_5As)_4$, followed by nucleophilic attack of S^{2-} on As(1) or As(4). The driving force for the formation **of 2** is presumably provided by the stability of the resulting $Re-S$ (thiolate) bonds. The $As-S$ (thiolate) distances of 2.167(4) and 2.154(4) \overline{A} are, as expected, significantly shorter than the bridging As-S(As) distances in the range $2.217(5) - 2.285(5)$ Å. Interestingly a marked widening is observed for the central As-S-As angle $[As(2)-S(3)-As(3), 99.2(2)^\circ]$ in comparison to the average value of 96.6(9)° established for $(C_2H_5AsS)_4$. The relevant As-S bonds participate in two six-membered chelate rings. In contrast, the $As(1)-S(2)-As(2)$ [91.3(2)^o] and As(3)-S(4)-As(4) [92.2(2) $^{\circ}$] angles, which are endocyclic to five-membered chelate rings, are somewhat smaller than in the free cycloarsathianes. With the exception of the As-Re-As angles $[100.1(1), 99.2(1)^\circ]$ little deviation $[85.3(4)-92.0(5)^\circ]$ from the idealised octahedral value is observed for the rhenium centres. 2 exhibits effectively C_2 symmetry in the crystal lattice and this symmetry is retained in solution as confirmed by the presence of only two resonances for the CH₂ and CH₃ groups in both the ¹H- and 13 C-NMR spectra.

Figure 3 Molecular structure of **2.** Selected bond lengths [A] and angles [°]: Re(1)-As(2) 2.552(2), Re(1)-As(4) 2.571(2), Re(1)-S(1) 2.485(5), Re(2)-As(l) 2.561(2), Re(2)-As(3) 2.555(2), Re(2)-S(5) 2.493(4), As(l)-S(l) 2.167(4), As(l)-S(2) 2.285(5), As(4)-S(5) 2.154(4), As(4)–S(4) 2.284(4), As(2)–S(2) 2.218(6), As(2)–S(3)
2.235(4), As(3)–S(3) 2.242(4), As(3)–S(4) 2.217(5); As(1)– $S(2)-As(2)$ 91.3(2), As(2)-S(3)-As(3) 99.2(2), As(1)-S(4)-As(4) $92.2(2)$

The increased degree of π back bonding to the carbonyl ligands in **2** in comparison to the starting compound $[ReBr(CO)₅]$ is reflected in the observed shifts of the v(CO) frequencies. For **2** values of 2038, 1980, 1958, and 1819 cm^{-1} were recorded, which are on average significantly narrower than in $[ReBr(CO)_5]^{[13]}$ with values of 2150, 2044, and 1985 cm⁻¹. The ¹³C-NMR chemical shifts for 2 appear also at lower field compared to the *trans* sited carbonyl groups in [ReBr(CO)₅] $(2: \delta = 186.34, 187.19, 188.80;$ $[ReBr(CO)₅]$ ^[14] $\delta = 177.0$). A similar phenomenon was previously observed in the compounds $[\{M(CO)_3\}_2\{cyclo (EtAsO)_{6}$ [^[1] (M = Cr, Mo, W).

Small As-S ligands such as As_2S , As_2S_2 , and As_2S_3 have been prepared by reaction of As₄S₄ and As₄S₃ with reactive transition metal complexes^[15,16]. Treatment of As₄S₄ with $M_0S_4^{2-}$ allows the isolation of the complex anion $\left[\text{Mo}_{2}\text{O}_{2}\text{S}_{2}(\mu-A\text{S}_{4}\text{S}_{12})\right]^{2}$, in which the familiar $\text{Mo}_{2}\text{O}_{2}\text{S}_{2}^{2}$ + fragment is strapped by a tetradentate $As₄S₁₂⁴$ ligand containing a central As_2S_6 eight-membered ring^[17]. Our preparation of 2 with its bridging $Et_4As_4S_5^2$ unit suggests that cycloarsathianes could offer a copious source of novel As - S ligands in carbonyl transition metal complexes.

Macrocyclic As-S Ligands

In view of the well-known stability of $M-S$ (thiolate) bonds for transition metals **M** in lower oxidation states, it was of interest to establish whether treatment of $(C_2H_5AsS)_n$ with transition metal halides such as OsCl₃ or $RuCl₃$ can also lead to a metal-mediated assembly of As-S ligands. We found that the reaction of MCl₃ ($M = Os$, Ru) with $(C_2H_5AsS)_n$ in toluene in a Carius tube at respectively 140 °C (70 h) or 105 °C (24 h) leads to the formation of the coloured crystalline products **3** and **4,** which are insoluble in all common organic solvents. Attempts to separate further soluble products from the reaction mixture by column chromatography were unsuccessful. Compounds **3** and **4** are isostructural and crystallize in the monoclinic space group *C2Ic.* As the crystal quality of **4** was poor, structural details will only be discussed for the Os(I1) complex **3** (Figure 4), which contains the novel hexadentate macrocyclic ligand $Et_6As_8S_1^{2-}$. Bond angles in the range $80.5(2)-101.2(1)$ ^o are observed for the distorted octahedral coordination sphere at the central metal atom. Limiting values are provided by the $As(3)-Os(1)-S(10)$ and $As(7)-Os(1)-S(9)$ angles [80.5(2), 82.3(3)^o], which belong to five-membered chelate rings, and the $As(1)-Os(1)-As(3)$ and $As(5)-Os(1)-As(7)$ angles $[101.2(1), 100.5(1)$ ^o, which are endocyclic to six-membered chelate rings. As-S-As angles in the 16-membered $(AsS)_{8}$ ring may be compared with the average value of $96.6(9)^\circ$ in $(C_2H_5AsS)₄$, with those in the five-membered chelate rings in the range $95.3(4)-97.9(4)°$ being similar, those in sixmembered chelate rings in the range $99.6(4) - 101.7(4)$ ° wider. In contrast, the S-As-S angles [94.3(2)- **100.7(4)"]** are narrowed in comparison to the average value of 103.2(6) for $(C_2H_5AsS)_4$. As is to be expected, the As-S(thiolate) distances to the cis-coordinated sulphur atoms S(9) and $S(10)$ [2.194(11), 2.212(10) A] are shorter than the bridging As-S(As) distances in the range $2.234(9)-2.286(9)$ Å, which are typical for **As-S** rings and cages. Trans influences are apparent for the bond distances in the 0s coordination sphere, with the *cis*-sited $Os(1)-As(1)$ and Os(1)-As(5) bonds [2.414(4), 2.412(4) A] being significantly shorter than the *trans*-sited $Os(1)-As(3)$ and Os(1)-As(7) bonds [2.450(4), 2.449(3) \AA].

The reduction of M(III) to M(II) ($M = Os$, Ru) required for the preparation of complexes **3** and **4** poses the question as to the nature of the accompanying oxidation. It seems reasonable to assume that **S-S** bond formation will be involved and this hypothesis is, at least, partially substantiated by the isolation of a second $Ru(II)$ complex $\text{[Ru}\{cycle-(Et_4As_6S_{10})\}]$ (5), obtained by employment of a longer reaction time (70 h) at higher temperature (140°C).

FULL PAPER T. Hausler, **W. S.** Sheldrick

Figure 4. Molecular structure of **3.** Selected bond lengths $[A]$ and angles $[°]$: Os(1)-As(1) 2.414(4), Os(1)-As(3) 2.450(4), angles [°]: Os(1)-As(1) 2.414(4), Os(1)-As(3) 2.450(4), Os(1)-As(5) 2.412(4), Os(1)-As(7) 2.449(3), Os(1)-S(9)
2.400(11), Os(1)-S(10) 2.414(9), As(4)-S(10) 2.212(10), 2.400(11), $Os(1)-S(10)$ 2.414(9), As(4)-S(10) 2.212(10), $As(8)-S(9)$ 2.194(11)

Scheme 2. $Et_6As_8S_{10}^{2-}$ and $Et_4As_6S_{10}^{2-}$

An analogous Os(I1) complex could not be prepared, even at considerably higher temperature (200°C). The novel 14 membered ring of the hexadentate macrocyclic ligand $Et_4As_6S_{10}^{2-}$, which exhibits crystallographic C_{2h} symmetry with As(2) and S(l) in **a** mirror plane, is smaller than in **3/4** and contains two **S-S** bonds. Disorder is observed for the sulphur atoms and the ethyl group attached to $As(1)$; site occupation factors of 0.5 were assigned to the atoms S(21)/S(22), S(31)/S(32), C(11)/C(12), and C(21)/C(22), which were refined under bond length constraints. The molecular dimensions of the macrocyclic ligand will therefore not be discussed in detail. In contrast to **3/4,** the thiolate sulphur atoms S(l)/S(la), are sited *trans* to one another in complex **5,** which contains only five-membered chelaterings. The 14-membered ring is effectively perfectly dimensioned for octahedral coordination of Ru(II), as evidenced by the similar $Ru-As$ and $Ru-S$ distances $[2.391(2),$ 2.378(6) A] and the very minor deviations $[88.7(1)-91.3(1)$ ^o] from the idealised octahedral angle. This finding is in accordance with the assumed relative thermodynamic stability of *5* in comparison to **4,** which can be presumed to be an intermediate product on the route to the former complex.

Figure *5.* Molecular structure of *5.* Selected bond lengths [A] and angles ["I: Ru(I)-As(1) 2 391(2), Ru(1)-S(1) 2.378(6), As(2)-S(1) $2.181(6)$ d length
78(6), A
I **As⁽²⁾**

Our present work indicates that intact cycloarsathianes may be stabilised in the coordination sphere of transition metals under mild conditions. At elevated temperature ring cleavage and metal-assisted assembly can afford novel macrocyclic ligands, particularly well-adapted for the coordination of the directing metal atom.

Experimental

All manipulations were carried out in an *Ar* atmosphere in carefully dried solvents. - FAB MS: Fisons VG Autospec with 3-nitrobenzyl alcohol as matrix. $-$ ¹H, ¹³P NMR: Bruker AM 400. - FT-IR^[18]; Perkin-Elmer 1700 and 1760. - Elementary analyses: Carlo Erba 1106. - $\exp(-C_2H_5AsS)_n$ was prepared by the reaction of $(C_2H_5AsO)_n$ with H_2S as described previously^[11].

 $[RuCl_2\{cycle-(C_2H_5AsS)_4\}(Ph_3P)]$ **(1):** A solution of *cyclo-* $(C_2H_5AS)_{n}$ (0.120 g, 0.22 mmol for $n = 4$) and $[RuCl_2(Ph_3P)_3]^{[19]}$ $(0.211 \text{ g}, 0.22 \text{ mmol})$ in 5 ml of CH₂Cl₂ was stirred at room temperature for 2 h. After a few minutes the colour changed from brown to deep-red. The volume was reduced to 1.5 ml and the solution covered with hexane to afford **I** as a red crystalline product. Yield 0.049 g (21%). - $C_{26}H_{35}As_4Cl_2PRuS_4$ (978.5): calcd. C 31.9, H 3.6; found C 32.8, H 4.4. - FAB MS; *m/z* (%): 980 (2) **(KBr):** $\tilde{v} = 1483 \text{ cm}^{-1}$ **(s), 1450 (s), 1434 (vs), 1212 (s), 1090 (s)**. 1030 (s), 753 (vs), 729 (vs). 699 (vs), 527 (vs), 512 (vs), 496 **(s),** 409 (vs), 383 (vs), 351 (vs). $[M^+]$, 943 (7) $[M^+ - Cl]$, 839 (3) $[M^+ - Cl - C_2H_5As]$. - IR

 $\int {\{Re(CO)_3\}_2 \{\mu - (Et_4As_4S_5)\}\}}$ (2): A solution of *cyclo-* $(C_2H_5AsS)_n (0.262 \text{ g}, 0.48 \text{ mmol} \text{ for } n = 4)$ and $[ReBr(CO)_5] (0.087$ g, 0.21 mmol) was heated with stirring in 10 ml of toluene at reflux for *5* min. The volume was reduced to 2 ml and the yellow solution covered with hexane to afford **2** as a yellow crystalline product. Yield 0.051 g (43%). $-C_{14}H_{20}As_{4}O_{6}Re_{2}S_{5}$ (1116.7): calcd. C 15.1, H 1.8; found C 14.9, H 1.5. - FAB MS; m/z (%): 1117 (1) [M⁺], 1089 (1) $[\{Re(CO)_3\}](Et_4As_4S_5)]^+$, 818 (1) $[\{Re(CO)_3\}](Et_4As_4S_5)]^+$, 547 (7) $[(Et_4As_4S_5)]^+$, 515 (10) $[(Et_4As_4S_4)]^+$. - ¹H NMR (CDCl₃): $\delta = 1.32$ (t, 6H, CH₂CH₃), 1.35 (t, 6H, CH₂CH₃), 2.21 (g, 4H, CH₂CH₃), 2.37 (q, 4H, CH₂CH₃). - ¹³C NMR (CDCl₃): δ = 10.74, 12.35 (2 s, CH₂CH₃), 35.13, 36.01 (2 s, CH₂CH₃), 186.34, 187.19, 188.80 (3 s, C=O). - IR (KBr): $\tilde{v} = 2038$ cm⁻¹ (vs), 1980 (s), 1958 (vs), 1919 (vs) (C=O), 1449 (m), 1029 (m), 718 (w), 610 (m), 590 (m), 511 (w), 467 (w), 452 (w), 427 (m), 379 (m), 348 (m).

 $[Os{cyclo-}(Et_{6}As_{8}S_{10})]$ (3): OsCl₃ (0.135 g, 0.45 mmol) was combined in a Carius tube (Duran glass, medium-walled 4 mm, diameter 16 mm, length 12 cm, volume approximately 10 cm³) with cyclo-(C₂H₅AsS)_n (0.497 g, 0.91 mmol for $n = 4$) dissolved in 1.5 ml of toluene. The tube was flame sealed, heated at 140°C for 70 h and allowed to cool slowly to room temperature. After opening, the solid product was filtered off and washed with methanol to afford red-brown **3.** Yield 0.098 g (17%) . - C₁₂H₃₀As₈O₅S₁₀ (1284.5): calcd. C 11.2, H 2.3; found *C* 10.0, H 1.4. - IR (KBr): $\tilde{v} = 1445 \text{ cm}^{-1}$ (s), 1373 (s), 1220 (s), 1029 (s), 722 (s), 710 (s), 403 (s), 389 **(s),** 347 **(s).**

mmol) was combined in a Carius tube (see **3** above) with *cyclo-* (C_2H_5AsS) _n (0.455 g, 0.84 mmol for $n = 4$) dissolved in 1.5 ml of toluene. The tube was flame sealed, heated at 105°C for 24 h and allowed to cool slowly to room temperature. After opening, the yellow-brown solid was filtered off and washed with methanol to afford **4**. Yield 0.321 g (64%). $-C_{12}H_{30}As_8RuS_{10}$ (1195.5): calcd. C 12.1, H 2.5; found C 12.3, H 2.1. - IR (KBr): $\tilde{v} = 1445$ cm⁻¹ (s), 1374 (s), 1220 (s), 1029 (s), 722 (s), 711 (s), 404 (sj, 387 (s), $[Ru\{cycle-(Et_6As_8S_{10})\}]$ (4): $RuCl_3 \tcdot 3 H_2O$ (0.104 g, 0.40) 347 (s).

 $\{Ru\{cycle-(Et_4As_6S_{10})\}\}\$ (5): $RuCl_3$ · 3 H_2O (0.067 *g, 0.26*) mmol) was added to a 1.5 ml toluene solution of cyclo - $\text{C}_2\text{H}_3\text{AsS}$)_n (0.290 g, 0.53 mmol for $n = 4$) in a Carius tube (see 3 above). The tube was flame sealed, heated to 140°C for 70 h and allowed to cool slowly to room temperature. After opening, the solid product was filtered off and washed with methanol to afford red-coloured crystals of 5. Yield 0.067 g (25%). - C₈H₂₀S₁₀As₆Ru (987.4): calcd. C 9.7, H 2.0; found C 9.8, H 1.6. - IR (KBr): $\tilde{v} = 1436$ cm⁻¹ (s), 1372 (m), 1218 **(s),** 1027 **(s),** 721 **(s),** 696 (s), 638 (s), 543 **8s),** 521 **(s),** 403 **(s),** 387 (m), 347 (m).

X-Ray Structural Analyses: Siemens P4 diffractometer, graphite monochromator, Mo- K_{α} radiation ($\lambda = 0.71073$ Å), SHELXTL PLUS programs^[17] for structure solution by direct methods and refinement by full-matrix least-squares. Semi-empirical absorption corrections were applied to the intensity data by use of ψ -scans. Hydrogen atoms were included at calculated positions with group isotropic temperature factors for **1** (phenyl rings), **2,** and **3** (ethyl $groups)$ ^[18].

monoclinic, space group $P2_1/n$, $a = 12.293(4)$, $b = 20.744(5)$, $c =$ $g \cdot cm^{-3}$, $\mu = 4.31$ mm⁻¹. Crystal size $0.44 \times 0.52 \times 0.62$ mm; ω scan, scan range: $2\Theta \le 55^{\circ}$ ($0 \le h \le 15$, $0 \le k \le 26$, $-19 \le l \le 19$), 9338 reflections collected, 8710 symmetry-independent reflections $(R_{\text{int}} = 0.032)$, max./min. transmission: 0.108/0.072; 369 parameters refined; $w^{-1} = \sigma^2(F_0) + 0.0001 F_0^2$, $R = 0.057$, $R_w = 0.054$ for 4772 reflections with $F_0^2 > 2\sigma(F_0^2)$; largest difference peak: 1.25 $e\AA^{-3}$. Anisotropic temperature factors for the Ru, As, Cl, S, and P atoms. $1 \cdot 1/2 \text{ CH}_2\text{Cl}_2$; C₂₆H₃₅As₄Cl₂PRuS₄ · 0.5 CH₂Cl₂, *M* = 1020.9, 15.090(5) \AA , β = 92.58(3)°, $V = 3844(3) \AA$ ³, $Z = 4$, $D_{\text{calcd}} = 1.764$

2: $C_{14}H_{20}As_4O_6Re_2S_5$, $M = 1116.7$, triclinic, space group $P\bar{1}$, $a = 9.528(2), b = 10.796(2), c = 14.507(3)$ \mathring{A} , $\alpha = 77.46(2), \beta =$ \cdot cm⁻³, μ = 13.82 mm⁻¹. Crystal size: 0.20 × 0.30 × 0.32 mm; oscan, scan range: $2\Theta \le 50^{\circ}$ ($0 \le h \le 11$, $-11 \le k \le 12$, $-16 \le l$ \leq 17), 4874 symmetry-independent reflections collected; max./min. transmission. 0.072/0.037; 194 parameters refined; $w^{-1} = \sigma^2(F_0)$ + 0.0001 $F_{\rm o}^2$, $R = 0.054$, $R_w = 0.050$ for 3788 reflections with $F_{\rm o}^2$ $2\sigma(F_o^2)$; largest difference peak: 1.87 eÅ⁻³. Anisotropic temperature factors for the Re, As, and S atoms. 82.94(2), $\gamma = 73.10(1)^\circ$, $V = 1390.9(5)$ \AA^3 , $Z = 2$, $D_{\text{calc}} = 2.666$ g

3: C_1 ₂₀A₅₈O₅S₁₀, $M = 1284.5$, monoclinic, space group C₂/c, $a = 35.664(7)$, $b = 10.738(2)$, $c = 17.688(4)$ \AA , $\beta = 107.18(2)$ °, $V =$ 6472(2) \AA^3 , $Z = 8$, $D_{\text{calc}} = 2.637$ g · cm⁻³, $\mu = 12.71$ mm⁻¹. Crystal size: $0.28 \times 0.40 \times 0.52$ mm; ω -scan, scan range: $2\Theta \le 47.5$ (0) $\leq h \leq 40$, $0 \leq k \leq 12$, $-20 \leq l \leq 18$), 5233 reflections collected, 4859 symmetry-independent reflections ($R_{int} = 0.054$); max./min. transmission: 0.024/0.005; 241 parameters refined; $w^{-1} = \sigma^2(F_0)$ + 0.0001 F_{0}^{2} , $R = 0.086$, $R_{w} = 0.084$ for 2926 reflections with F_{0}^{2} $2\sigma(F_0^2)$; largest difference peak: 3.13 eA^{-3} . Anisotropic temperature factors for the Os, As, and **S** atoms.

4: $C_{12}H_{30}As_8RuS_{10}$, $M = 1195.5$, monoclinic, space group *C2/c*, $a = 35.778(7)$, $b = 10.725(2)$, $c = 17.685(6)$ Å, $\beta = 107.24(3)$ °, $V =$ 6481(4) \mathbf{A}^3 , $Z = 8$, $D_{\text{calcd}} = 2.392 \text{ g} \cdot \text{cm}^{-3}$, $\mu = 9.25 \text{ mm}^{-1}$. **4** is sostructural with **3.**

5: $C_8H_{20}As_6RuS_{10}$, $M = 987.4$, orthorhombic, space group *Cmca, a* = 18.401(6), $b = 13.690(5)$, $c = 10.609(4)$ Å, $V = 2672(1)$ A^3 , Z = 4, $D_{\text{caled}} = 2.454 \text{ g} \cdot \text{cm}^{-3}$, $\mu = 8.74 \text{ mm}^{-1}$. Crystal size: $0.14 \times 0.40 \times 0.46$ mm; w-scan, scan range: $2\Theta \le 50^{\circ}$ ($-21 \le h$) $0, 0 \le k \le 16, -12 \le l \le 0$, 1335 symmetry-independent reflections collected; max./min. transmission: 0.1 12/0.052; 80 parameters refined; $w^{-1} = \sigma^2(F_0) + 0.0004 F_0^2$, $R = 0.063$, $R_w = 0.069$ for 751 reflextions with $F_0^2 > 2\sigma(F_0^2)$; largest difference peak: 1.32 eÅ⁻³. The coordination sphere of As(1) is disordered; site occupation factors of 0.5 were employed for the atoms $C(11)/C(12)$, $C(21)/C(22)$ (ethyl group), S(21)/S(22) and S(31)/S(32). Anisotropic temperature factors for the Ru, As, and **S** atoms.

- ['I W. **S.** Sheldrick, **T.** HLusler, *Z. NutuPforsch. Teil B* **1993,** *48,* 1069.
- c2] W. S. Sheldrick, T. Hausler, *Z. Anorg Allg Chem.* **1993, 619,** 1984.
- **L31** W. **S.** Sheldrick, **T.** Hausler, *Z Anorg Allg Chem.* **1994, 620,** 1984.

1984.

1984. **Chem. States States States States States States States States 34.**

1974, ⁷⁷, 225.

1974, ⁷⁷, 225.

1974, ⁷⁷, 225.

1986, ¹⁹, 225.

1986, ¹⁹, 225.

1986, ¹⁹, 225. 334. Durand, J.-P. Laurent, J. Organomet. Chem. 1974, 77, 225.
-
- ^[5] A. L. Rheingold, A.-J. DiMaio, *Organometallics* **1986**, 5, 393.
- **L6]** S. R. Cooper, **S.** C. Rawle, *Struct. Bonding (Berlin)* **1990, 72,** 1; A. J. Blake, M. Schroder, *Ad)! 1nor.g. Chem.* **1990, 35,** 1.
- **L71** A. von Baeyer, *Liebigs Ann.* **1858,** *107,* 279.
- [*I A. J. DiMao, A. L. Rheingold, *Inorg Chem* **1990,29,** 798.
- *L91* J. T. Share, W. **T.** Pennington, A. W Cordes, *Acta Crystullogr. Sect* C **1988,** *41,* 1831.

FULL PAPER T. Hausler, W. **S.** Sheldrick

- ["I G. Bergerhoff, H. Namgung, *Z. Kristallogr:* **1979,** *150,* 209. [''I T. Hausler, W. **S.** Sheldrick, *Z. Naturforsch. Teil B* **1994, 49,**
- **[I2]** A. M. Arif, A. H. Cowley, M. Pakulski, *J Chem.* Soc., *Chem.* **1215.**
- *Commun.* **1987,** 165.
- **[131** E. W. Abel, I. **S.** Butler, *Trans. Farad Soc.* **1967,** *63,* 45. **[I4]** M. **J.** Webb, W A. G. Graham, *J. Organomet. Chem.* **1975,** *65,*
- **119.**
- **[I5]** M. DiVaira, P. Stoppioni, *Coord. Chem. Rev.* **1992,** *120,* 259; M. DiVaira, P. Stoppioni, **M.** Perazzini, *Inorg Chim. Acta* **1987,** *132, 37.*
- **[I6]** I. Bernal, H. Brunner, W. Meier, H. Pfisterer, J. Wachter, M. L. Ziegler, *Angew Chem.* **1984,** *96,* 428; **H.** Brunner, H. Kavermann, B. Nuber, J. Wachter, M. L. Ziegler, *Angew. Chem.* **1986, 98,** 551; H. Brunner, L. Poll, J. Wachter, B. Nuber, *J Organomet. Chem.* **1994, 471,** 117.
- [171 G. **A.** Zank, T. B. Rduchfuss, **S.** R. Wilson, *J Am. Chem. SOC.* **1984,** *1U6,* 7621.
- **[I8]** T. Hausler, *Dissertation,* Ruhr-Universitat Bochum, **1995.**
- **[I9]** R. K. Poddar, U. Agarwala, *Indian J Chem.* **1971, 9,** 477.
- [20] *SHELXTL PLUS,* Siemens Analytical X-ray Instruments, Madison, Wi; **1991.**
- [21] Further details of the crystal structure investigations are available on request from Fachinformationszentrum Karlsruhe, Gesellschaft fur **wissenschaftlich-technische** Information mbH, D-76344 Eggenstein-Leopoldshafen, Germany, with specification of the deposition numbers CSD-380078-380081. the names of the authors, and the journal reference.

[95139]